

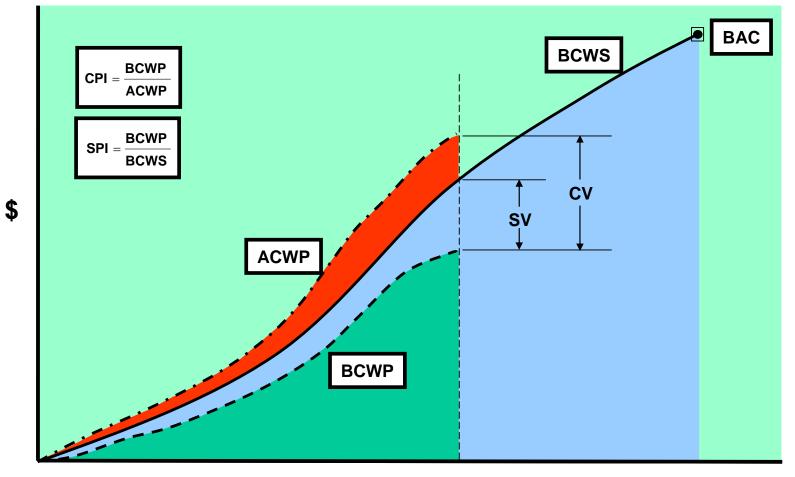
Earned Schedule in Action

19th IIPM Conference Hilton Alexandria Mark Center, Virginia 5th - 7th November 2007

Kym Henderson

Executive Vice President Elect, Research & Standards PMI College of Performance Management <u>kym.henderson@froggy.com.au</u>

> © Kym Henderson © Walt Lipke


Context

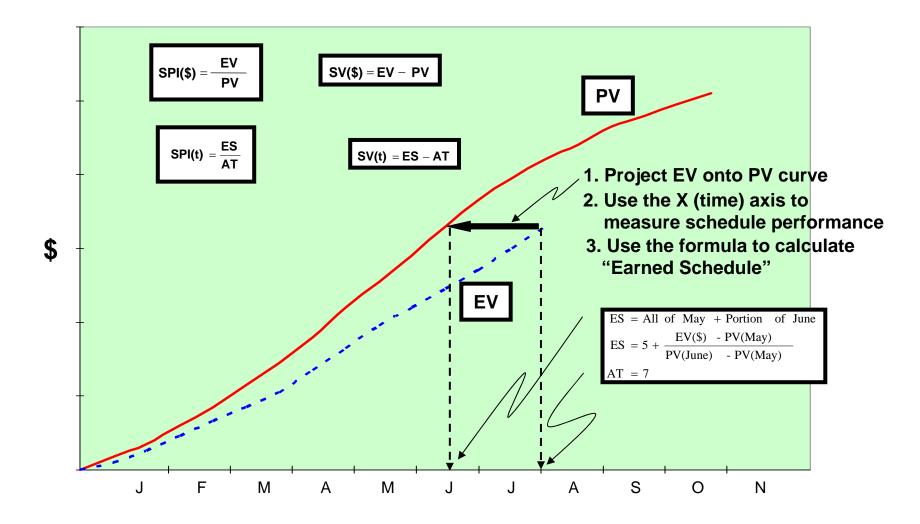
"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3% of the total cost growth. **Therefore, our problem is not cost, it is SCHEDULE.**"

> Dr Steve Gumley CEO DMO (Defence Materiel Organisation)

Prescription 1st year anniversary DMO Bulletin, July 06, Issue 61, p3

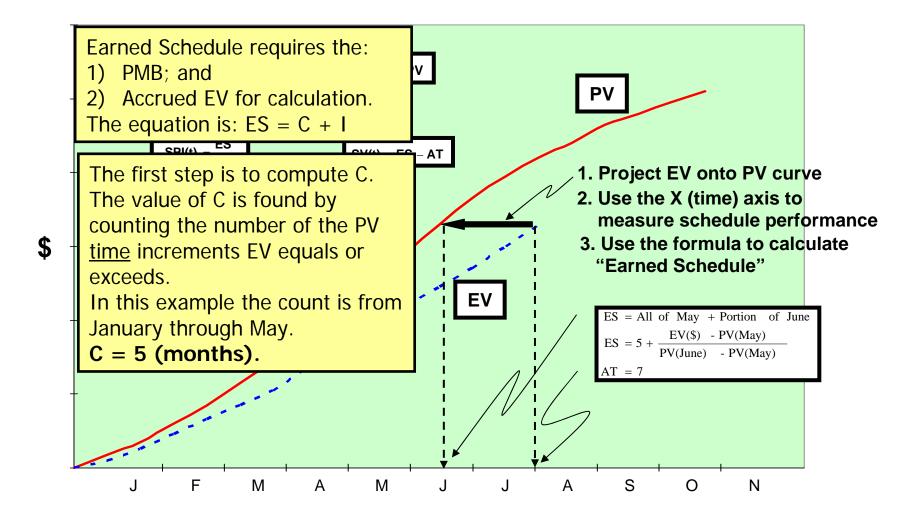
EVM Schedule Indicators

EVM Schedule Indicators

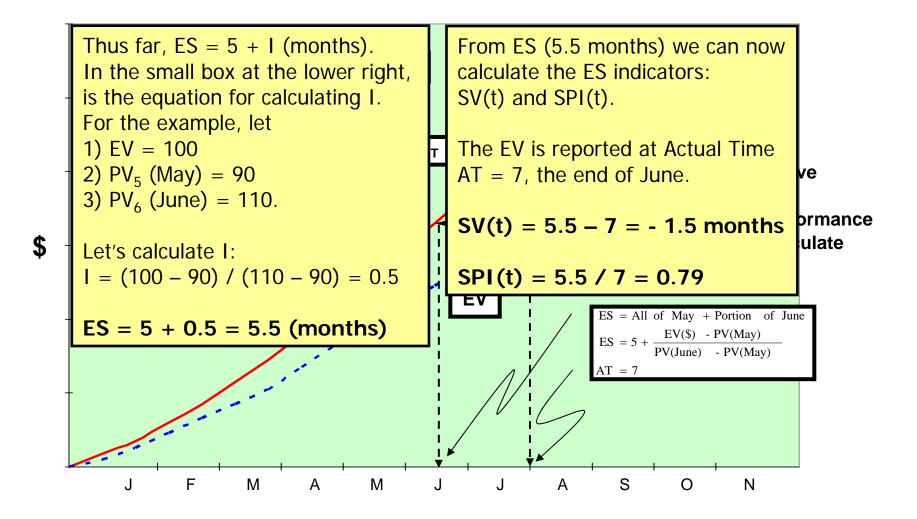

- SV & SPI behave erratically for projects behind schedule
 - SPI improves and concludes at 1.00 at end of project
 - <u>SV improves and concludes at \$0 variance at end of project</u>
- Schedule indicators lose predictive ability over the last third of the project

EVM Schedule Indicators

- Why does this happen?
 - SV = EV PV
 - SPI = EV / PV
- At planned completion PV = BAC
- At actual completion EV = BAC
- When actual completion > planned completion
 - SV = BAC BAC = \$000
 - SPI = BAC / BAC = 1.00


Regardless of lateness !!

Earned Schedule: The Concept Seminal paper published in 2003


19th IIPMC Virginia 5-7 Nov 2007 v1

ES Computation Example

19th IIPMC Virginia 5-7 Nov 2007 v1

ES Computation Example

19th IIPMC Virginia 5-7 Nov 2007 v1

8

Earned Schedule Metrics

- Required measures
 - Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion
 - Earned Value (EV) the planned value which has been "earned"
 - Actual Time (AT) the actual time duration from the project beginning to the time at which project status is assessed
- All measures available from existing EVM data

Earned Schedule Indicators

 What happens to the ES indicators, SV(t) & SPI(t), when the <u>P</u>lanned project <u>D</u>uration (PD) is exceeded (BCWS = BAC)?

They Still Work ... Correctly!!

- ES will be \leq PD, while AT > PD
 - SV(t) will be negative (time behind schedule)
 - SPI(t) will be < 1.00

Reliable Values from Start to Finish !!

Earned Schedule Predictors

- Long time goal of EVM ... Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
 - IEAC(t) = PD / SPI(t)
 - IEAC(t) = AT + (PD ES) / PF(t)

where PF(t) is the Performance Factor (time)

- Analogous to IEAC used to predict final cost
- Independent Estimated Completion Date (IECD)
 - IECD = Start Date + IEAC(t)

Earned Schedule Key Points

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
- SV(t) and SPI(t)
 - <u>Not</u> constrained by PV calculation reference
 - Provide <u>duration</u> based measures of schedule performance
 - Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management (using EVM with ES)

Critical Path Study

© Kym Henderson © Walt Lipke

Critical Path Study Outline

The Scheduling Challenge

Case Study Project

- The project
- The EVM, Earned Schedule and Network Schedule approach
- Earned Schedule vs Critical Path predictors
- <u>Real</u> Schedule Management with Earned Schedule

Initial experience and observations

Conclusion and Final Thoughts

The Scheduling Challenge

- A realistic project schedule is dependent on multiple, often complex factors including accurate:
 - Estimation of the tasks required,
 - Estimates of the task durations
 - Resources required to complete the identified tasks
- Identification and modeling of dependencies impacting the execution of the project
 - Task dependencies (e.g. F-S process flows)
 - "Dependent" Milestones (internal and external)
 - "Other logic"

The Scheduling Challenge

 From small projects into large projects and programs, scheduling requirements becomes exponentially more complex

Integration

- Of schedules between "master" and "subordinate" schedules
- Often across multiple tiers of
 - Activities and
 - Organisations

contributing to the overall program of work

Essential for producing a <u>useful</u> integrated master schedule

To further compound schedule complexity

- Once an initial schedule baseline has been established progress monitoring <u>inevitably</u> results in changes
 - Task and activity durations change because "actual performance" does not conform to plan
 - Additional <u>unforeseen</u> activities may need to be added
 - Logic changes as a result of corrective actions to contain slippages; and
 - Improved understanding of the work being undertaken
 - Other "planned changes" (Change Requests) also contribute to schedule modifications over time

Wouldn't it be nice

To be able to explicitly declare "Schedule Reserve" in the project "schedule of record"

• Protect committed key milestone delivery dates

To have schedule macro level indicators and predictors

- Ideally, derived separately from the network schedule!
- Provides a means for comparison and validation of the measures and predictors provided by the network schedule
- An <u>independent</u> predictor of project duration would be a particularly useful metric
 - "On time" completion of projects usually considered important

Just like EVM practitioners have for cost The potential offered by Earned Schedule

Case Study Project

Commercial sector software development and enhancement project

- Small scale: 10 week Planned Duration
- **Time critical**: Needed to support launch of revenue generating marketing campaign
- Cost budget: 100% labour costs

Mixture of:

- 3 tier client server development
 - Mainframe, Middleware, Workstation
- 2 tier client server development
 - Mainframe to Workstation direct

The EVM and ES Approach

Microsoft Project 2002 schedule

- Resource loaded for time phased effort and cost estimation
- Control Account Work Package views developed in the schedule
- Actual Costs captured in SAP time recording system
 - Limited (actual) cost schedule integration
- Contingency (Management Reserve) managed outside the schedule

Top level Planned Values cum "copied and pasted" into Excel EVM and ES template

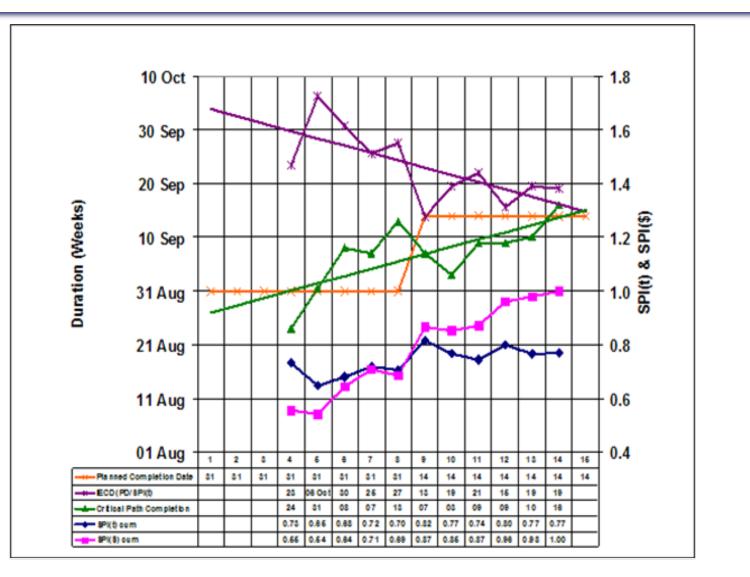
High level of cost – schedule integration achieved

Schedule Management

Weekly schedule updates from week 3 focusing on:

- Accurate task level percentage work completion updates
- The project level percentage work completion (cumulative) calculated by Microsoft Project
 - Percentage work complete transferred to the EVM and ES template to derive the progressive Earned Value (cumulative) measure

Schedule review focusing on critical path analysis


- Schedule updates occurred as needed with
- Revised estimates of task duration and
- Changes to network schedule logic

particularly when needed to facilitate schedule based corrective action

Actual costs entered into the EVM and ES template as they became available (weekly)

19th IIPMC Virginia 5-7 Nov 2007 v1

An Integrated Schedule Analysis Chart Critical Path, IECD, SPI(t) and SPI(\$) on one page

19th IIPMC Virginia 5-7 Nov 2007 v1

Schedule Analysis

Initial expectation

 The critical path predicted completion date would be more pessimistic than the IECD

In fact

- The ES IECD trend line depicted a "late finish" project with improving schedule performance
- The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance

Became the "critical question" in Week 8

- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates

Schedule Analysis Result

IECD the more credible predictor in <u>this circumstance</u>

- Work was not being accomplished at the rate planned
- No adverse contribution by critical path factors
 - e.g. Externally imposed delays caused by "dependent milestone"

Two weeks schedule delay communicated to management

Very late delay of schedule slippage a very sensitive issue

Corrective action was immediately implemented

- Resulted in two weeks progress in one week based on IECD improvement in week 9
- Project substantively delivered to the revised delivery date

The IECD vs Critical Path Predictors

- Network schedule updates do not usually factor past (critical path) task performance into the future
 - Generally concentrate on the <u>current</u> time window
 - Task updates
 - Corrective action to try and contain slippages
 - Critical path predicted completion date is not usually calibrated by past actual schedule performance

The ES IECD

- Cannot directly take into account critical path information
- BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI(t)

Further Observations

Much has been written about the consequences of not achieving work at the EVM rate planned

- At very least, incomplete work needs to be rescheduled ...
- Immediate critical vs non critical path implication requires detailed analysis of the network schedule
- <u>Sustained</u> improvement in schedule performance is a difficult challenge
 - SPI(t) remained in the .7 to .8 band for the entire project!
 - In spite of the corrective action and recovery effort
- <u>Any</u> task delayed <u>eventually</u> becomes critical path if not completed

SPI(t) a very useful indicator of schedule performance

 Especially later in the project when SPI(\$) was resolving to 1.0

19th IIPMC Virginia 5-7 Nov 2007 v1

Questions of Scale

We know that ES is scalable as is EVM

Issues of scale did not arise due to small size of the project

Detailed analysis of the ES metrics is required

- The same as EVM for cost
- The "masking" or "washout" effect of negative and positive ES variances at the detailed level can be an issue
- The same as EVM for cost

Apply Earned Schedule to the Control Accounts and Work Packages on the critical path

And "near" critical path activities

Earned Schedule augments network schedule analysis – it doesn't replace it

• Just as EVM doesn't replace a bottom up ETC and EAC

<u>Real</u> Schedule Management with Earned Schedule

ES is of considerable benefit in analysing and managing schedule performance

- The "time critical" dichotomy of reporting "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
 - ES metrics provided an <u>independent</u> means of sanity checking the critical path predicted completion date
 - Prior to communicating overall schedule status to management
- ES focused much more attention onto the network schedule than using EVM alone

- ES is expected be of considerable value to the schedule management for large scale projects and programs
 - Exponential increase in the network scheduling complexities
 - Unavoidable and necessary on those programs and so
 - The need and benefit of an independent means of sanity checking schedules of such complexity is much greater
- ES is anticipated to become the "bridge" between EVM and the Network Schedule

Available Resources

PMI Sydney Australia, Chapter website

http://sydney.pmichapters-australia.org.au/

Click "Education," then "Presentations and Papers" for .pdf copies

• First online repository of Earned Schedule papers and presentations

Earned Schedule Website

http://www.earnedschedule.com.au/

- Large and growing online repository of Earned Schedule and follow-on concept papers, presentations and calculators
 - "P Factor" and Schedule Adherence
 - Effective Earned Value
 - Application of statistical methods to cost and schedule prediction
 - xPI Stability Calculator
- All freely available for download and use

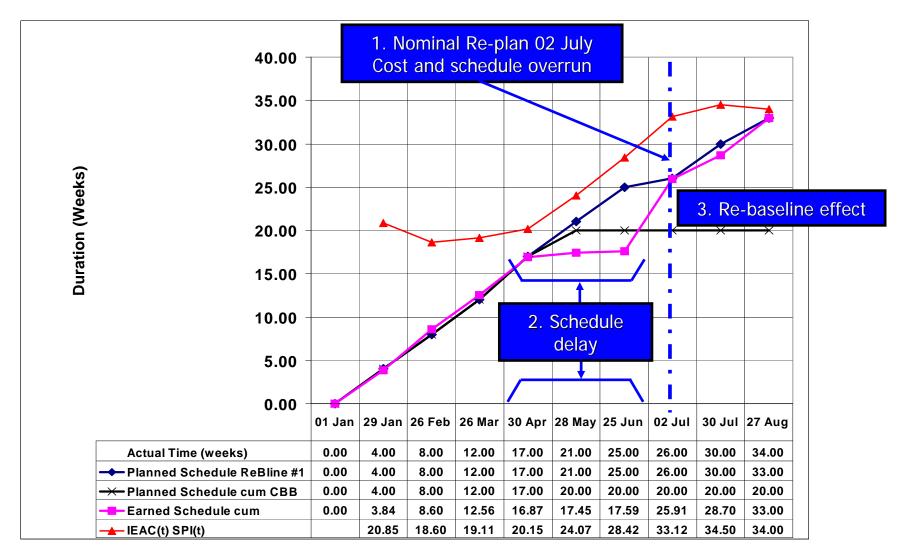
Calculators and Analysis Tools

Freely provided

- Application assistance if needed
- Please respect Copyright
- Feedback requested
 - Improvement / Enhancement suggestions
 - Your assessment of value to Project Managers
 - Disclosure of application and results (with organization permission)

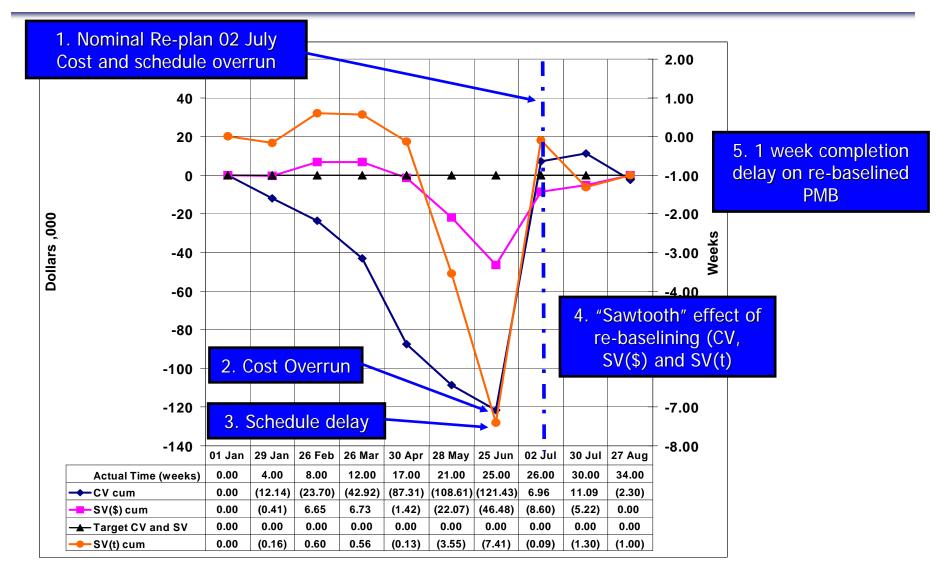
Contact Information

Walt Lipke		Kym Henderson
<u>waltlipke@cox.net</u>	Email	<u>kym.henderson@froggy.com.au</u>
(405) 364-1594	Phone	61 414 428 537


Appendix: ES and Re-Baselining

© Kym Henderson © Walt Lipke

ES indicators are affected by re-baselining


- Behaviour of SV(t) and SPI(t) is analogous to CV and CPI
 - See examples
- PMB change affects schedule prediction similarly to cost
- Earned Schedule brings attention to the potential schedule impact of a declared "cost only" change

Earned Schedule – Re-Baseline Example Real project data – <u>nominal</u> re-baseline

19th IIPMC Virginia 5-7 Nov 2007 v1

Earned Schedule – Re-Baseline Example *CV*, *SV*(\$) and *SV*(*t*)

